On the embedding problem for nonsolvable Galois groups of algebraic number fields: Reduction theorems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Embedding Problem for Nonsolvable Galois Groups of Algebraic Number Fields: Reduction Theorems

is to construct an extension L/K such that L/k is Galois, and such that there exists an isomorphism /?:£ -* E, where £ = Gal(L//c), such that y ResL/K = e(i. L is called a solution field, j? a solution isomorphism, and the pair (L, fi) a solution, to P. At times we only require /? to be monomorphic; in such a context (L, /?) is called an improper solution, and if j? is epi, (L, /?) is a proper ...

متن کامل

Actions of Galois Groups on Invariants of Number Fields

In this paper we investigate the connection between relations among various invariants of number fields L coresponding to subgroups H acting on L and of linear relations among norm idempotents.

متن کامل

Duality Theorems in Galois Cohomology over Number Fields

the direct limit taken over all finite Galois extensions K of k in which the integral closure Y of X is unramified over X, where GKJk denotes the Galois group of such an extension, and where GY denotes the group of points of G with coordinates in Y. For example, if X=k, our notation coincides with that of [10]. For any X, the group H(X,C) is the r-th cohomology group of the profinite group Gjr=...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 1972

ISSN: 0022-314X

DOI: 10.1016/0022-314x(72)90034-0